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The effect of fluctuations on the dynamics of a model of a bistable thermochemical system is studied by
means of the master equation. The system has three stationary states and exhibits two types of bistability:
the coexistence of two stable focuses and the coexistence of a stable focus with a stable limit cycle separated
by a saddle point. Stochastic effects are important when the system is close to the bifurcation, in which the
stable limit cycle disappears through a homoclinic orbit. In this case the distribution of the first passage time
from the stable limit cycle to the stable focus has a multipeak form. The dependence of this distribution on
the number of particles is presented. Near the homoclinic orbit bifurcation, the system also exhibits excitability
due to a particular shape of the basin of attraction of the stable focus.

Introduction

Fluctuations play a negligible role in macroscopic, equilibrium
systems, provided they are far from critical points. Close to
critical points, fluctuations induce the so-called critical phe-
nomena like opalescence. In far-from-equilibrium, nonlinear
systems, the situation is in some sense similar. Far from
bifurcations, at which qualitative changes in the dynamic
behavior of a system develop, the influence of fluctuations on
the dynamics is negligible. However, close to bifurcations
fluctuations can qualitatively change the dynamics of nonlinear
systems. The stochastic effects in the dynamics of nonlinear
chemical systems have been for a long time studied theoretically
for some simple models.1-6 Recently, the influence of fluctua-
tions has been observed in experiments for chemical systems
close to bifurcations.7-11

Models of chemical systems, especially those consisting only
of elementary reactions (mono- or bimolecular reactions without
autocatalysis), are more complex to analyze than models of
thermochemical systems. We have elaborated the simple model
of the thermochemical system, which consists of two elementary
reactions.12-14 One of them is an exothermic, catalytic bimo-
lecular reaction, and the other one is a monomolecular reaction.
The dynamics of the system can be described by two variables,
namely, the concentration of reactant and the temperature. The
main nonlinearity in our model follows from the exponential
dependence of the rate constant on the temperature. In the
present paper we study the effect of fluctuations in our model
for parameters at which the system has three stationary states
coexisting with limit cycles. Although stable limit cycles are
attractors of dynamics of nonlinear chemical systems, there is
no relaxation mechanism for a phase of oscillations. Fluctuations
in such oscillating systems cause the specific effect of un-
bounded phase diffusion.15,16In our model the unstable or stable
limit cycles surround the steady states; two of them may be
stable or unstable nodes or focuses, and the third one is a saddle
point. Variation of a bifurcation parameter causes the following
sequence of bifurcations. At small values of the bifurcation
parameter, two stable focuses are separated by the saddle point.
When this parameter is increased, one of the stable focuses
becomes unstable and a stable limit cycle with “radius” growing
from zero appears due to the supercritical Hopf bifurcation. In

some interval of the bifurcation parameter, the system has two
attractors: the stable limit cycle and the stable fixed point. With
increase of the bifurcation parameter, the radius of the stable
cycle grows and at some critical value a homoclinic trajectory
appears. The stable limit cycle disappears, and the other
stationary state remains the only attractor.

The model and the bifurcation analysis are described in the
next two sections. The master equation approach to description
of the stochastic dynamics is next presented. Since the solution
to the master equation is unknown, we use numerical simulations
of the master equation. Results of the simulations are described
in the subsequent section. In the last section we discuss the
obtained results.

Model

A well-mixed system which exchanges energy with its
surroundings is considered. The system is composed of the
reactantA, the productB, and the catalystC. The following
reactions occur in the system:

The first reaction is exothermic with the reaction heatQ. We
assume that the second reaction occurs on the walls of the
system. This reaction imitates an unspecified mechanism
allowing for the supply of the reactantA and the removal of
the productB. It is easy to see that the composition of the system
is uniquely determined by the concentration ofA. The balance
of energy is positive, but because the system is open this does
not violate the law of energy conservation. We assume that the
system exchanges energy with the surroundings by the New-
tonian heat flow through the boundaries, which are kept at
constant temperatureTb. For simplicity we consider the diluted
gas system, for which the dependence of the internal energyU
on the temperatureT is given by the simple relationU ) (3/
2)NkBT, where N is the number of particles andkB is the
Boltzmann constant. The state of the system is completely
characterized by the number density ofA and the temperature.
The rate equations for these variables are given by

A + C 98
k1

B + C + Q (1)

B 98
k2

A (2)
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whereV is the volume of the system;S is the surface of the
system;n is the total number density;nA, nB, andnC are the
number densities ofA, B, and C, respectively; andκ is the
coefficient of heat exchange. Taking into account thatn ) (nA

+ nB + nC), the density ofB can be eliminated from eq 3.
The rate constants and the coefficient of heat exchange for

diluted gases can be presented in the following form:

where pB is the coefficient determining the probability of
reaction 2 on the walls.

It will be useful to introduce the following dimensionless
variables: the molar fractionsR ) nA/n andη ) nC/n of reagents
A andC, respectively, the dimensionless temperatureθ ) T/Tb,
and dimensionless timet′ ) nk1

0t. Equations 3 and 4 have then
the form

where ε ) EA/kBTb, q ) Q/kBTb, c1 ) κ0S/qk1
0N, and c2 )

pBκ
0S/k1

0N are dimensionless parameters.
q does not change the position of the nullclineRA for R and

RT for θ on the phase plane (θ,R). Therefore,q is convenient
as the bifurcation parameter. The nullclines are given by

It is easy to check thatRA is the monotonic function ofθ
and that the necessary and sufficient condition for the existence
of two extremes (the N-shape) onRT is ε > 4. Moreover, the
intersection points of the nullclines can be determined by the
intersections ofRT with straight lineRA+T given by

Relation 12 follows from the linear combination of the right-
hand sides of eqs 8 and 9.

In the present paper we consider the case when the nullclines
have three intersection points, all of them positioned on the
repelling branch of the nullclineRT. This corresponds to three
stationary states. The middle one of them is a saddle point, and
the extreme ones are nodes or focuses (stable or unstable).
Assuming that values ofη andε are known and thatRT(θ) and

RA+T(θ) intersect themselves at two given values of the
temperature equal toθ2 andθ3, one can determine values ofc1

andc2 from the following relations:

In the sequel we identifyθ2 with the saddle point and assume
that it is placed at the inflection point ofRT. It is easy to check
that θ2 ) θip ) ε/(ε - 2). If θ3 ) ε/(ε - 2) + ∆, where∆ is
sufficiently small, then all three stationary states are located on
the repelling branch ofRT.

Bifurcation Analysis
We assume thatε ) 8, η ) 0.1, and∆ ) 0.3; then from eqs

13 and 14 it follows thatc1 ) 4.747166× 10-4 and c2 )
6.048452× 10-4. For these values of the parameters, the two
stationary states with coordinatesSS1 (θ1 ) 1.19273,R1 )
0.748734) andSS3 (θ3 ) 1.63333,R3 ) 0.402924) are nodes
or focuses. These states are separated by the saddle pointSP
(θip ) 1.33333,Rip ) 0.638381).

From the linear stability theory, it follows that forq ) q1 =
4.75 the stateSS3 becomes unstable focus and the stable limit
cycle (SLC) with radius equal to zero appears due to the
supercritical Hopf bifurcation. In this range ofq, the stateSS1

is the stable focus. With increasingq the radius ofSLCincreases,
and atq ) q2 = 5.0 the stable limit cycle touches the separatrix
S2 of SP. In consequence the homoclinic orbit coming out and
into the saddle point appears and the stable limit cycle
disappears.17-19 For q1 < q < q2 the system is bistable and two
attractors are the stable focusSS1 and the stable limit cycleSLC.
Figure 1 shows the attractors, the nullclines, and the separatrices
of the saddle point atq ) 4.76 that is close to the disappearance
of SLCthrough the homoclinic orbit bifurcation. The separatrices

V
dnA

dt
) -k1nAnCV + k2nBS (3)

3
2
NkB

dT
dt

) k1nAnCVQ - κnSkB(T - Tb) (4)

k1 ) k1
0( T

Tb
)1/2

exp(-
EA

kBT) (5)

k2 ) κpB (6)

κ ) κ
0( T

Tb
)1/2

(7)

dR
dt′ ) xθ[-Rη exp(-ε/θ) + c2(1 - R - η)] (8)

dθ
dt′ ) 2

3
xθq[Rη exp(-ε/θ) - c1(θ - 1)] (9)

RA )
c2(1 - η)

ηe-ε/θ + c2

(10)

RT )
c1e

ε/θ

η
(θ - 1) (11)

RA+T ) (1 - η) +
c1

c2
-

c1

c2
θ (12)

c1 ) 1 - η
1
η

eε/θ2(θ2 - 1) +
θ2 - 1

c2

(13)

c2 )
(θ3 - θ2)η

eε/θ2(θ2 - 1) - eε/θ3(θ3 - 1)
(14)

Figure 1. Nullclines for R (the dashed black line) andθ (the solid
black line) for the following values of the parameters:ε ) 8, η ) 0.1,
c1 ) 4.747166× 10-4, andc2 ) 6.048452× 10-4. The plot shows the
stationary statesSS1 (stable focus, green point),SP(saddle point, red
point), andSS3 (unstable focus, red point), the stable limit cycleSLC
(green closed curve), and four separatrices of the saddle point for the
bifurcation parameterq ) 4.76. Two separatrices outgoing fromSP
and approachingSS1 andSLCare marked in green, whereas separatrices
S1 andS2, which separate the basins of attraction ofSS1 andSLC, are
marked in red.
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S1 and S2 determine the partition of the phase plane into the
basins of attraction ofSS1 (BASS1) andSLC(BASLC). As shown
in Figure 1, the separatrixS2 begins at the upper boundary of
the phase plane determined byR ) 0.9 atθ = 1.2, next winds
roundSLC, and ends atSP. The separatrixS1 starts at the upper
boundary at a little smaller value ofθ and next approaches
monotonicallySP. These separatrices determine the shapes of
BASLCandBASS1. The basinBASLCis confined betweenS1

and S2 and is surrounded byBASS1 on all sides excluding a
small interval at the upper boundary of the phase plane. In
consequenceBASLChas the shape of a feather. Forq > q2 the
system has only one attractorSS1 and is excitable.

Master Equation
In the stochastic description, the state of the system is given

by the distribution functionP(θ,NA,t′) of the temperatureθ and
the populationNA of speciesA. It is more convenient to use
population NA instead ofR, becauseNA is changed in the
reactions by∆NA ) ( 1. The dynamics ofP is determined by
the following master equation:14

Functionswr describe the probability of transitions of the system
from a state (θ,NA) to (θ + ∆θ,NA + ∆NAr) due to three different
processes (r ) 0,1,2) in the system. Termw0 is related to pure
energy exchange without reaction in nonelastic collisions of
particles with the boundaries of the system. For this process
∆NA0 ) 0, and the following form ofw0 has been derived14

under the assumption of Maxwellian distribution of molecules:

where14

The componentw1 describes transitions of the system after a
collision connected with reaction 1. In this process∆NA1 ) -1
andθ increases by the fixed value∆θ1 ) q/(3/2)N due to release
of the reaction heatq. The transition probabilityw1 follows from
the frequency of collisions.1 For reaction 1,w1 is given by

In contrast tow1, the transition functions related to reaction 2
and the Newtonian heat exchange involve the continuous
spectrum of∆θ, because the amount of energy transferred at
collision with the wall of the thermostat is not fixed. Inelastic

particle-surface collisions ofB particles can lead to reaction 2
for which the particle population increment is∆NA2 ) 1. The
transition function is then given by

The analytical treatment of the master equation is really
limited,1-4 even if it has a discrete form. It is certainly much
more difficult if this equation has the integro-differential form
of eq 15. For this reason, we apply the Monte Carlo simulations
of the dynamics described by this equation to study stochastic
effects in our system. The Monte Carlo approach to the master
equation for discrete variables is well-known,22,23 and its
appropriate modification for the continuous form of eq 15 has
been presented in a recent paper.20

Results

The two-variable thermochemical system considered here can
have various types of coexisting attractors. We study in detail
the case of the coexistence of the stable focus and the stable
limit cycle separated by the separatrices of the saddle point (see
Figure 1). Figure 2 shows the time dependence of the temper-
ature on time forq ) 4.76. In this case the stable focusSS1

coexists with the stable limit cycleSLCsurrounding the unstable
focus SS3. The stochastic trajectory goes away fromSS1 and
makes a few circulations alongSLCbut next comes back close
to SS1. These escapes and returns repeat, but the number of
loops around the stable limit cycle and around the stable focus
changes randomly. At the chosen value ofq the system is close
to the bifurcation through homoclinic orbit. The limit cycle is
close to the separatrixS2 entering SP, and therefore, it is
relatively weak. In consequence the residence times aroundSS1

are much longer than onSLC.
Near the homoclinic bifurcation, the distance betweenS1 and

S2 in the neighborhood ofSS1 is small (see Figure 1). During
the evolution aroundSS1 fluctuations can push the system close
to the separatrixS2. Then the trajectory moves close to this
curve, which winds aroundSLC. Even if the trajectory during
its evolution alongS2 visits BASLC, there is a high probability
that it escapes fromBASLCand returns to the vicinity ofSS1

after making only a single round. Thus, the large single impulses
seen in Figure 2 strongly resemble excitability of the stable focus
SS1. Examples of trajectories which exhibit this property are

Figure 2. Changes ofθ in time for the same values of the parameters
as in Figure 1.

w2(θ,NA f θ + ∆θ,NA + 1) ) 1
2
Nc2(1 - R - η)xθω

(θ,∆θ) (19)

∂

∂t′
P(θ,NA,t′) ) ∑

r)0,1,2
∫∆θ<θ

d(∆θ)P(θ - ∆θ,NA -

∆NAr,t′) × wr(θ - ∆θ,NA - ∆NAr f θ,NA) -

∑
r)0,1,2

P(θ,NA,t′)∫∆θ>-θ
d(∆θ) ×

wr(θ,NA f θ + ∆θ,NA + ∆NAr) (15)

w0(θ,NA f θ + ∆θ,NA) )
1
2
Nqc1[1 - pB(1 - R - η)]xθω(θ,∆θ) (16)

ω(θ,∆θ) ) θ
(θ + 1)3

(2 +
(θ + 1)(32N)|∆θ|

θ
) × 3

2
N

{exp(- 3
2
N

|∆θ|
θ ) for ∆θ < 0

exp(- 3
2
N∆θ) for ∆θ > 0

(17)

w1(θ,NA f θ + ∆θ1,NA - 1) ) NRηxθ exp(-ε/θ)δ(∆θ -
∆θ1) (18)
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shown in Figure 3. Such specific excitability appears here even
though the system is bistable.

The shapes of the basins of the attractions shown in Figure
1 have an important effect on the stochastic trajectories which
circulate inBASLC. If a stochastic trajectory goes along the
upper right-hand part ofS2 belowSP, then fluctuations do not
influence qualitatively its further evolution along this part of
S2. The situation changes qualitatively, if the trajectory attains
the left part ofS2. When the trajectory approaches the vicinity
of SP, fluctuations may force it either to make a next round
alongSLCor evolve towardSS1. This possibility repeats at each
round of the trajectory alongSLC. The system has a chance to
leaveBASLCand evolve towardSS1 or to remain inBASLC.
To exclude the stochastic trajectories, which escape fromBASLC
and immediately return back to it, we apply the condition that
the trajectory will stay a longer period of time inBASS1, if it
crosses the lineθ ) 1.3. We have verified in thousands of
simulations that after crossing this line all trajectories evolve
toward SS1 and stay close to it for some period of time.
However, if during a circulation a stochastic trajectory remains
in BASLCwhen passing nearSP, then it turns round and has to
make the next circulation before it can reach the vicinity of
SS1. Therefore, the maximum probability of escape time returns

periodically, and the probability distribution of first passage time
τ should exhibit several peaks separated by intervals of time
approximately equal to the period ofSLC. Such form of the
distribution function reflects the circulations of the system along
SLC. To confirm these predictions, we have performed numer-
ical simulations of stochastic trajectories initialized at the point
(θ ) 1.49,R ) 0.51) positioned onSLC.

From the ensemble of the stochastic trajectories (several
thousands runs), we obtain the probability distribution function
P(τ) of the first passage timesτ from BASLCto BASS1. Figure
4 showsP(τ) for the systems with different number of molecules
N: 20 000, 50 000, 100 000, and 200 000 forq ) 4.76. Each
of these distributions has four or five peaks. The width of the
peaks follows from dephasing of the stochastic trajectory on
the limit cycle. The peaks are broader for small systems, because
then fluctuations more easily wipe out the phase of the
circulation. For larger systems the highest peak appears for
longer timeτ, because fluctuations become relatively weaker
when N increases. The trajectory needs more time to escape
from BASLCand evolve close toSS1.

Discussion

Fluctuations in a bistable system can induce jumps of the
system between two basins of attraction. In one-variable
systems, attractors are stable stationary states and their basins
of attraction are separated by a saddle point. Escapes of a
stochastic trajectory can be described as transitions through a
one-dimensional barrier located at the saddle point. The mean
passage times between the attractors can be approximately
calculated from the Fokker-Planck equation,21,24 which is
derived from the expansion of the master equation for large
systems. No such theoretical treatment is known in the case of
bistable multivariable systems.

In our two-variable system in whichSLCcoexists withSS1,
one can try to describe escapes fromBASLC to BASS1 as
transitions through a two-dimensional barrier. The problem can
be simplified by the assumption that a phase variable describing
circulations along the limit cycle is fast as compared to a radial
variable describing the distance of a stochastic trajectory from
the limit cycle. In this case one can consider the escapes as
transitions through a one-dimensional barrier which periodically
changes in time with a period approximately equal to the period
of the limit cycle oscillations. A similar approach has been used
for the transition through an unstable limit cycle.25

The coexistence of a stable limit cycle and a stable stationary
state has been observed experimentally in many chemical
systems.26-33 Models of these systems are quite complex and
contain many variables. The model presented in this paper
contains two variables only, and it describes a very simple
chemical system. Its dynamics may be rich due to the nonlinear
dependence of the rate constant on the temperature. In particular,
in a previous paper14 we studied the subcritical Hopf bifurcation
in this model, while in the present paper we investigate the
coexistence of the stable limit cycle and the stable focus
separated by separatrices of the saddle point. Despite its
simplicity, the model shows many phenomena which are
characteristic for multivariable chemical systems as well as for
simple systems with strong exothermic reactions. Therefore, the
results presented in this paper give indications to look for similar
effects in real chemical systems which have the same types of
attractors.

Close to the homoclinic orbit bifurcation, the stochastic
trajectory jumps between the regions close toSS1 andSLCas
shown in Figure 2. The system spends a much longer time

Figure 3. Two trajectories (blue and brown) on the phase plane (θ,R)
illustrating excitability in the bistable regime of the system for the same
values of the parameters as in Figure 1. Note that the brown trajectory
does not enterBASLC. The stationary states and the separatrices are
marked in the same colors as in Figure 1.

Figure 4. Distributions of first escape times from the basin of attraction
of SLCto the close vicinity ofSS1 for different numbers of molecules
N ) 20 000, black; 50 000, blue; 100 000, red; 200 000, green. The
values of the parameters are the same as in Figure 1.
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aroundSS1 than during oscillations onSLC, because the steady
state is a relatively stronger attractor thanSLC. The long time
intervals in which the trajectory remains close toSS1 are
occasionally interrupted by a few rounds alongSLC. Every time
the number of the oscillations is random, and therefore, the time
series ofθ resemble the intermittency observed in deterministic
chaotic systems. We previously obtained a similar type of
oscillations in the same model close to the subcritical Hopf
bifurcation,14 where the two attractors are the stationary state
and the limit cycle. It has also been found in a model with
period-2 oscillations that fluctuations can induce transition to
quasi chaotic dynamics due to merging of bands of two cycles
broadened in stochastic systems.34,35

Escapes fromBASLCto the close vicinity ofSS1 may be
characterized by the mean first escape time, but such charac-
teristic is only a rough one. More detailed information is
contained in the distribution of the first passage time. The results
presented in Figure 4 show that this distribution has a few peaks.
The distance between them is approximately equal to the period
of oscillations on the deterministic limit cycle. Such periodical
enhancement of the influence of fluctuations is caused by the
particular shape of the separatrixS2. Fluctuations cause the
Brownian dispersion of phase of the circulation aroundSLC,
which leads to broadening of peaks of the escape time
distribution. The oscillations aroundSLCare not uniform but
have a relaxational character; the deterministic dynamics is the
weakest in the vicinity of the saddle point, and the evolution is
there significantly slowed. The fluctuations then become
relatively more important, and trajectories most likely pass
through this region in transitions to the basin of attraction of
SS1. This part of evolution gives the largest contribution to the
dispersion of the oscillation phase which destroys the structure
of the distribution functionP(τ). The peaks are narrower for
larger systems because the influence of fluctuations decreases
with the total number of particles in a system. To our best
knowledge, the distribution of the first passage time presented
in this paper is the first example of the multipeak distribution
reported in the literature.

The presented results have been obtained by direct Monte
Carlo simulation of the master equation,22,23 which is well
recognized as the most accurate simulation method applied at
the mesoscopic level of description of stochastic systems.36,37

On the other hand, this approach requires relatively stronger
computing power, and for this reason the distribution function
for first passage times shown in Figure 4 still exhibits a
considerable amount of noise. The convergence of the calcula-
tions is very slow, since the noise level decreases like the inverse
of the square root of the volume of the statistical sample. The
presented results are the compromise we have decided to choose
between the desired accuracy and the demand for computation
time. The observed oscillations are a prominent and qualitative
property of the distribution function, and the obtained results,
even though not very accurate, provide a sufficient confirmation
of this effect. For large systems, the expansion of the master
equation yields the Fokker-Planck equation which in turn is
equivalent to Langevin equations that complement the deter-
ministic dynamics by noise terms. Although it can be expected
that calculations based on Langevin equations are relatively
more efficient than the simulations of the master equations, the
former are restricted by the limits of validity of the Langevin
equations and so are valid only for large systems. However, in
this limit computation time of any numerical calculations

becomes prohibitively long, because the mean first passage time
increases exponentially with the numberN of particles in the
system.21,24 Moreover, the fluctuation-induced dispersion of
oscillation phase expands with time, so the level of noise
contained in the distributionP(τ) always increases for longer
escape timesτ. Therefore, for any system the peaks in the
structure ofP become for some sufficiently largeτ strongly
perturbed and practically blurred by the noise.

Although the system is in the bistable regime, it also exhibits
the excitability. Small perturbations aroundSS1 decay in time.
Sufficiently large perturbations aroundSS1 may switch the
system toBASLCor to BASS1. Due to the particular shape of
BASLC, appropriate perturbations are necessary to switch the
system fromSS1 to SLC. Slightly larger perturbations can switch
the system outsideBASLCand they induce the large impulses
of R andθ, which are characteristic for excitability.
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(6) Kawczyński, A. L.; Gorecki, J.; Nowakowski, B.J. Phys. Chem.

A 1998, 102, 7113.
(7) Ali, F.; Strizhak, P.; Menzinger, M.J. Phys. Chem. A1999, 103,

10859.
(8) Strizhak, P.; Menzinger, M.J. Phys. Chem. A1996, 100, 19182.
(9) Alonso, S.; Sendina-Nadal, I.; Perez-Munuzuri, V.; Sancho, J. M.;

Sagues, F.Phys. ReV. Lett. 2001, 87, 078302.
(10) Alonso, S.; Sagues, F.Phys. ReV. E 2001, 63, 046205.
(11) Sendina-Nadal, I.; Alonso, S.; Perez-Munuzuri, V.; Gomez-Gesteira,

M.; Perez-Villar, V.; Ramirez-Piscina, L.; Casademunt, J.; Rancho, J. M.;
Sagues, F.Phys. ReV. Lett. 2000, 84, 2734.
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